
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 19, OCTOBER 1, 2014 4931

Distributed Compressed Sensing for Static and
Time-Varying Networks

Stacy Patterson, Member, IEEE, Yonina C. Eldar, Fellow, IEEE, and Idit Keidar

Abstract—We consider the problem of in-network compressed
sensing from distributed measurements. Every agent has a set of
measurements of a signal , and the objective is for the agents
to recover from their collective measurements using only com-
munication with neighbors in the network. Our distributed ap-
proach to this problem is based on the centralized Iterative Hard
Thresholding algorithm (IHT). We first present a distributed IHT
algorithm for static networks that leverages standard tools from
distributed computing to execute in-network computations with
minimized bandwidth consumption. Next, we address distributed
signal recovery in networks with time-varying topologies. The net-
work dynamics necessarily introduce inaccuracies to our in-net-
work computations. To accommodate these inaccuracies, we show
how centralized IHT can be extended to include inexact compu-
tations while still providing the same recovery guarantees as the
original IHT algorithm.We then leverage these new theoretical re-
sults to develop a distributed version of IHT for time-varying net-
works. Evaluations show that our distributed algorithms for both
static and time-varying networks outperform previously proposed
solutions in time and bandwidth by several orders of magnitude.

Index Terms—Compressed sensing, distributed algorithm, dis-
tributed consensus, iterative hard thresholding, sparse recovery.

I. INTRODUCTION

I N compressed sensing, a sparse signal is sampled
and compressed into a set of measurements, where

is typically much smaller than . If these measurements are
taken appropriately, then it is possible to recover from this
small set of measurements using a variety of polynomial-time
algorithms [1].
Compressed sensing is an appealing approach for sensor

networks, where measurement capabilities may be limited due
to both coverage and energy constraints. Recent works have
demonstrated that compressed sensing is applicable to a variety
of sensor networks problems including event detection [2],

Manuscript received September 06, 2013; revised February 18, 2014 and June
21, 2014; accepted June 30, 2014. Date of publication July 17, 2014; date of
current versionAugust 25, 2014 . The associate editor coordinating the review of
this manuscript and approving it for publication was Dr. Gesualdo Scutari. The
work of Y. C. Eldar was supported in part by the Intel Collaborative Research
Institute for Computational Intelligence (ICRI-CI). The work of I. Keidar was
supported in part by the ICRI-CI, the Technion Autonomous Systems Program,
and the Israeli Science Foundation.
S. Patterson is with the Department of Computer Science, Rensselaer Poly-

technic Institute, Troy, NY 12180 USA (e-mail: sep@cs.rpi.edu).
Y. C. Eldar and I. Keidar are with the Department of Electrical Engineering,

Technion-Israel Institute of Technology, Haifa 32000 Israel (e-mail: yonina@ee.
technion.ac.il; idish@ee.technion.ac.il).
Digital Object Identifier 10.1109/TSP.2014.2340812

urban environment monitoring [3] and traffic estimation [4].
In these applications, measurements of the signal are taken by
sensors that are distributed throughout a region. The measure-
ments are then collected at a single fusion center where signal
recovery is performed. While the vast majority of recovery al-
gorithms consider a centralized setting, a centralized approach
is not always feasible, especially in sensor networks where no
powerful computing center is available and where bandwidth
is limited.
Since the measurements are already distributed throughout

the network, it is desirable to perform the signal recovery
within the network itself. Distributed solutions for compressed
sensing have begun to receive attention lately [5]–[8]. Although
these algorithms converge to a correct solution, they do not
optimize for metrics that are important in a distributed setting,
most notably, bandwidth consumption. In addition, these tech-
niques often have a high computational cost as they require
every agent to solve a convex optimization problem in each
iteration. Such computational capacity may not be available in
low-power sensor networks.
We propose an alternative approach to distributed com-

pressed sensing that is based on Iterative Hard Thresholding
(IHT) [9]. In a centralized setting, IHT offers the benefit of
computational simplicity when compared to methods like basis
pursuit. Our distributed approach maintains this same computa-
tional benefit. In addition, recent work [10] has established that
centralized IHT can be used for problems beyond compressed
sensing, for example sparse signal recovery from nonlinear
measurements. Our distributed solution provides the same
recovery guarantees as centralized IHT and thus can also be
applied to these settings.
In our distributed implementation of IHT, which we call

DIHT, all agents store identical copies of an estimate of .
In each iteration, every agent first performs a simple local
computation to derive an intermediate vector. The agents then
perform a global computation on their intermediate vectors to
derive the next iterate. This global computation is performed
using only communication between neighbors in the network.
We present two versions of our distributed algorithm, one for

static networks and one for networks with time-varying topolo-
gies. In the version for static networks, we employ standard
tools from distributed computing to perform the global compu-
tation in a simple, efficient manner. The result is a distributed al-
gorithm that outperforms previous solutions in both bandwidth
and time by several orders of magnitude.
In networks that are time-varying, it is not possible to perform

the global computation exactly unless each agent has a priori
knowledge of the network dynamics. However, it is possible to

1053-587X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



4932 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 19, OCTOBER 1, 2014

approximate the global computation using only local communi-
cation. We first show how centralized IHT can be extended to
accommodate inexact computations while providing the same
recovery guarantees as the original IHT formulation. We then
leverage these new theoretical results to develop a version of
DIHT that uses multiple rounds of a distributed consensus al-
gorithm [11] to execute each inexact global computation. We
call this algorithm consensus-based DIHT, or CB-DIHT. Eval-
uations show that CB-DIHT requires several orders of magni-
tude less time and bandwidth than the best-known, previously
proposed solution.

A. Related Work

Several recent works have proposed distributed algorithms
that can apply to a basis pursuit formulation of the distributed
compressed sensing problem. In these, the signal is recovered by
solving a convex formulation of the original recovery problem.
These distributed methods can be divided into two classes:
double-looped algorithms and single-looped algorithms.
The double looped techniques [6], [12], [13] consist of an

inner loop, in which agents solve a dual problem, and an outer
loop where the Lagrange multipliers are updated locally. In each
iteration of the inner loop, the agents exchange -vectors with
their neighbors, and multiple inner loop iterations are needed to
solve the dual problem. With the exception of [13], these algo-
rithms all require a static network. In single-looped methods [5],
[7], [8], in each iteration, every agent solves a local convex op-
timization problem; it also exchanges an -vector with each of
its neighbors and uses this vector to update the parameters of its
local optimization problem. A recent work [7] presented an ex-
perimental evaluation of these methods and demonstrated that
the single-looped algorithm D-ADMM [7], [8] outperformed
the other algorithms. While D-ADMM uses only local commu-
nication, each agent must send its entire estimate vector to every
neighbor in every iteration. This vector may not be sparse for
many iterations, and therefore, bandwidth usage can be high.
Furthermore, the convergence time increases as the network
connectivity increases, whereas the convergence rates of DIHT
and CB-DIHT improve with increased network connectivity.
We note that the convergence of D-ADMM has only been estab-
lished theoretically for bipartite graphs, but experiments have
demonstrated convergence in general graphs.
The distributed subgradient algorithm [14], [15] was pro-

posed as a general distributed convex optimization technique
but can be adapted to basis pursuit. In this approach, every
agent stores an estimate of the signal. In each iteration, it
exchanges its estimate with its neighbors and then performs a
local projected subgradient step. The algorithm converges in
static and time-varying networks, though the convergence rate
can be slow. Simulations have shown that, in a time-varying
graph, the distributed subgradient method converges more
quickly than the double looped algorithm in [13].
The work by Ravazzi et al. [16] proposes a distributed al-

gorithm based on iterative soft thresholding. This algorithm is
similar to DIHT for static networks, however, it only converges
in complete, static graphs. This is in contrast with DIHT which
converges in any connected, static graph.

Our approach for CB-DIHT was inspired by recent work on
a distributed proximal gradient algorithm [17]. This algorithm
also simulates a centralized, inexact optimization method, in
this case, a proximal gradient method, and it uses multiple it-
erations of distributed consensus to perform each inexact com-
putation. This work differs from ours in that the convergence of
the inexact centralized proximal gradient method had already
been established [18], whereas no such prior analysis exists for
centralized IHT. Furthermore, the distributed proximal gradient
algorithm depends on assumptions that are not compatible with
standard compressed sensing formulations such as the one in
this paper.
The convergence of centralized IHT was established in [19],

and its application to compressed sensing was studied in [9]. Re-
cently, Beck and Eldar adapted IHT to signal recovery for more
general nonlinear objective functions and provided theoretical
guarantees on signal recovery in this setting [10]. We leverage
this work in our distributed algorithms. A variation on IHT for
nonlinear measurements was also proposed in [20]. This work
uses a Taylor series approximation for the gradient step in each
iteration rather than an exact gradient as in [10].
Finally, we note that, in a related work [21], we present an

extension to DIHT for static networks that can further reduce
bandwidth for problems that require many rounds to converge.

B. Outline

The remainder of the paper is organized as follows. In
Section II, we detail our problem setting and formulation. In
Section III, we present the DIHT algorithm for static networks,
and in Section IV, we present the CB-DIHT algorithm for
time-varying networks. Section V provides numerical results
demonstrating the performance of DIHT and CB-DIHT. A
discussion on the fault tolerance and recovery guarantees
of distributed compressed sensing algorithms is given in
Section VI. Concluding remarks are provided in Section VII.

II. PROBLEM FORMULATION

We consider a network of agents. The agents may be sen-
sors themselves or they may be fusion nodes that collect mea-
surements from several nearby sensors. We assume there is a
unique agent identified as agent 1. This agent can be chosen
using a variety of well-known distributed algorithms (see [22]).
The agents seek to estimate a signal that is -sparse,

meaning has at most non-zero elements. Each agent has one
or more (possibly noisy) measurements of the signal, and each
has a loss function , known only to agent , that in-
dicates how well a given vector satisfies its measurements. The
goal is for every agent to recover from their collective mea-
surements using only communication between neighbors in the
network. To recover , the agents attempt to solve the following
optimization problem,

(1)

where denotes the psuedo-norm, i.e., the number of
non-zero components. Note that each agent only has access to



PATTERSON et al.: DISTRIBUTED COMPRESSED SENSING 4933

its own measurements, and so the agents must collaborate to
solve the optimization problem.
The following assumption is made throughout the paper.
Assumption 0: Agent 1 knows the sparsity parameter of

the signal to be estimated.
We note that this assumption is made only for convenience.

In practice, IHT can be implemented without this knowledge by
only keeping the elements above a threshold.
We also make the following assumptions about the loss

functions.
Assumption 1: The loss functions , , satisfy the

following conditions:
(a) There exists a such that for all

.
(b) The gradient is Lipschitz continuous over with

Lipschitz constant , i.e.,

Note that this implies that is also
Lipschitz continuous over .

(c) There exists such that for all ,

(d) Every agent knows its , and agent 1 knows
an upper bound on the Lipschitz constant for

.
The agents do not know , , nor .
If agent 1 does not know an upper bound on , then it can

learn one using a distributed algorithm. One such upper bound
is . Distributed algorithms for computing an upper
bound for are described in Appendix A.
As a specific example problem, we consider compressed

sensing [1]. Here, each agent has linear measurements of
taken using its sensing matrix . The measure-

ment vector of agent , denoted , is given by ,
where is the measurement error for agent . The loss
function for each agent is . It is straight-
forward to verify that this loss function satisfies Assumption 1.
We define

where

... ...

The objective is for agents to collaborate to solve the com-
pressed sensing problem,

(2)

In the sequel, we present solutions for the proposed dis-
tributed sparse signal recovery problem for two different
network models, a static network and a time-varying network.
Static Network Model: We model the network by an undi-

rected, connected graph. Agents can communicate only with

their neighbors in the graph. Messaging is reliable but asyn-
chronous, meaning that every message that is sent is eventually
delivered, but the delay between sending and delivery may be
arbitrarily long.
Time-Varying Network Model: Here, we consider a discrete

time model. At each time step , the network is modeled by a
directed graph , where is the set of agents and

are the directed communication links between them at time
. If , then agent can send a message to agent
in time step . Messaging is reliable and synchronous, meaning
that any message sent in time is received before time .
We adopt the following standard assumption about the network
connectivity over time [14], [17], [23].
Assumption 2: The sequence of graphs ,

, satisfies the following conditions:
(a) The graph is strongly connected, where

is the set of edges that appear in infinitelymany time steps.
(b) There exists an integer such that if ,

then , for all .
In short, this assumption means that, while the network may not
be connected at any given time step, the union of graphs over
each interval of time steps is a strongly connected
graph. The agents do not know the value of .
Our goal, in both network settings, is for the agents to recover

the same sparse signal from their private loss functions using
only local communication. In Section III, we present our dis-
tributed recovery algorithm for static networks. In Section IV,
we extend this algorithm to the time-varying networks.

III. DISTRIBUTED ALGORITHM FOR STATIC NETWORKS

Problem (1) is known to be NP-Hard in general [24]. How-
ever, for suitable loss functions, efficient centralized algorithms
exist. Our distributed recovery algorithm is based on Iterative
Hard Thresholding [9], [19]. We first briefly review this method
and related convergence results. We then provide the details of
our distributed algorithm.

A. Iterative Hard Thresholding

Consider a -sparse signal that has been measured and
a loss function that captures how well a given
vector matches those measurements. We assume that is lower
bounded and that it has a Lipschitz-contiuous gradient with con-
stant . IHT [9], [10], [19] is a gradient-like, centralized algo-
rithm that recovers by solving the optimization problem,

(3)

Let be the thresholding operator which returns a vector
where all but the entries of with the largest magnitude are
set to 0 (with ties broken arbitrarily). IHT begins with an ar-
bitrary -sparse vector . In each iteration, a gradient-step
is performed, followed by application of the thresholding oper-
ator. This iteration is given by,

(4)

where is a constant.
The loss function is not necessarily convex, and, in gen-

eral, optimization algorithms for non-convex objective func-



4934 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 19, OCTOBER 1, 2014

tions only guarantee convergence to a stationary point. The in-
clusion of the sparsity constraint, which is also non-convex,
means that we cannot employ the same definition of stationarity
that is used for problems with convex constraints. We instead
use a definition of a stationary point that is relevant to problem
(3) called -stationarity (see [10] for details).
Definition 1: For a given , a -sparse vector

is an -stationary point of problem (3) if it satisfies,

It has been shown that -stationarity is a necessary condition
for optimality (see Thm. 2.2 in [10]).
With this definition, we can now state the relevant conver-

gence result for IHT with a general nonlinear objective.
Theorem 3.1 (Thm. 3.1 in [10]): Let be lower-bounded

and let be Lipschitz-continuous with constant . Let
be the sequence generated by IHT with .

Then, any accumulation point of is an -stationary
point of (3).
We note that this theorem does not guarantee that IHT will

converge to an -stationary point; it only guarantees that if the
algorithm converges, the accumulation point is an -stationary
point. More details on the convergence behavior of IHT for non-
linear objectives can be found in [10].
For the compressed sensing problem, a stronger result has

been shown.
Theorem 3.2 (Thm. 5 in [9]): Let be a -sparse signal

sampled with error , i.e., . Let , and let
satisfy the restricted isometry property [25] with .

Then the sequence generated by IHT with
satisfies

This theorem implies that, if the measurements are taken
without error, then IHT recovers the original signal.

B. Distributed Iterative Hard Thresholding

We now present our distributed implementation of IHT for
static networks. Every agent stores an identical copy of the
signal estimate . In iteration , each agent first performs a
local computation to derive an intermediate vector . The
agents then perform a global computation on their intermediate
vectors to derive the next iterate , which is, again,
identical at every agent. We now define these computations.
Local Computation: Agent computes its intermediate

vector,
(5)

using its local loss function and the current iterate . This
vector can be computed using only local information.
Global Computation: In the global computation step, all

agents must compute a function that depends on all of their
intermediate vectors. This function is defined as follows,

(6)

To find , first, the agents compute the sum of their interme-
diate vectors using a well-known distributed algorithm called
broadcast/convergecast [26] (described below). This sum is
then used to complete the gradient step, followed by applica-
tion of the threshold operator. The combination of the local
computation (5) and the global computation (6) is equivalent
to one iteration of centralized IHT in (4).
We now describe DIHT. The agents first create a breadth-

first spanning tree over the network, rooted at agent 1, using a
distributed algorithm (see [27] for details). This requires

messages, where is the number of edges in the
network. After the tree is constructed, each agent knows the IDs
of its parent and its children in the spanning tree. The creation
of this tree can be done as a pre-processing step, but in practice,
the tree creation is usually done in conjunction with the first
broadcast.
Agent 1 initializes its estimate vector to . In each

iteration , agent 1 computes its intermediate vector ac-
cording to (5). It then sends to its children. On receipt of

from its parent, an agent updates its own estimate to
equal . It then computes by (5). The agent sends
to its children, if it has any. If an agent does not have any chil-
dren, it sends its vector to its parent. Once an agent has
received vectors from all of its children, it adds those vectors
to its and sends the resulting sum to its parent (if it is not
agent 1). When agent 1 receives vectors from all of its children,
it adds these vectors to and finishes the global computation
(6) to obtain . This completes one iteration. The process
is then repeated to obtain the next iterate. Pseudocode for DIHT
is given in Algorithm 1.

Algorithm 1: DIHT

initialize

Algorithm executed by agent 1.
while TRUE do

Send to children
Receive from each

Algorithm executed by agent .
on from parent)

Send to children
Receive from each

Send to parent



PATTERSON et al.: DISTRIBUTED COMPRESSED SENSING 4935

C. Algorithm Analysis

DIHT requires storage at each agent. In every itera-
tion, every agent computes the gradient of its local loss func-
tion. For compressed sensing, this requires only matrix-vector
multiplication. Therefore, the local computation is much sim-
pler than the double and single looped algorithms that require
each agent to solve a convex optimization problem in every it-
eration. An iteration of DIHT consists of a broadcast in which
a -sparse vector is sent down the tree and a convergecast in
which the intermediate -vectors are aggregated up the tree. As
the tree has edges, total messages are sent per
iteration. For the broadcast, each agent sends at most
messages, where is the node degree in the original graph.
For the convergecast, the agent sends a single message to its
parent in the tree, for a total of messages per agent per it-
eration. While agent 1 plays a unique role in the global compu-
tation, it performs the same number and types of computations
as every other agent, with the exception of the thresholding op-
eration which requires a single scan of the sum vector. One ap-
proach to find the largest magnitude values in a single scan
is for agent 1 to keep a priority queue, initially containing the
first components of the sum vector. Starting with component

, the agent checks each remaining component in the sum
vector against the smallest entry in the queue. If the compo-
nent is larger, then the component is added to the queue and the
smallest entry is removed. Each enqueue or dequeue operation
has time complexity, and checking the smallest entry
can be done in constant time. Thus, the running time of this ap-
proach is .
The estimates , , are equivalent to each other

in all iterations, and they evolve exactly as in (6). Thus,
DIHT provides the same convergence guarantees as centralized
IHT. This is formalized in the following theorems.
Theorem 3.3: Let each , , satisfy Assumption

1, and let , , be the sequences of estimates
generated by DIHT with in a static network. Then,
any accumulation point of , , is an -sta-
tionary point of (1).
Theorem 3.4: For the distributed compressed sensing

problem (2), let be the original -sparse signal measured
with error , and let be such that and satisfy
the restricted isometry property with . Then, the

sequences of estimates , , generated by
DIHT with in a static network satisfy

IV. DISTRIBUTED ALGORITHM FOR TIME-VARYING NETWORKS

We now show how to extend DIHT to networks with time-
varying topologies. The local computation step (5) remains the
same. For the global computation step (6), the broadcast-con-
vergecast algorithm used to compute a sum in DIHT requires a
static network; it cannot be applied in a time-varying network
setting. In fact, without a priori knowledge of the network dy-
namics or membership, it is not possible for the agents to per-
form the global computation in finite time using any algorithm.
This is because, without this knowledge, an agent cannot de-

termine when it has received the information it needs (from all
other agents) to compute the sum in (6).
In our extended DIHT algorithm, we use a distributed con-

sensus algorithm [11] to approximate the average of the inter-
mediate vectors and then use this approximation to complete the
gradient step, followed by application of the thresholding op-
erator. Distributed consensus can be implemented without any
global knowledge of the network, and it has been shown that, in
time-varying networks, distributed consensus converges to the
average of the agents’ initial values [23]. After a finite number
of iterations, the agents learn an approximation of this average.
To use distributed consensus for the global computation steps in
DIHT, we must first consider the effects of such approximation
errors on centralized IHT.
In Section IV-A, we present new theoretical results on the

convergence of centralized IHT with approximate sums. We
capture these approximations in the form of inexact compu-
tations of . We show that, under a limited assumption on
the accuracy of the gradient values, IHT with inexact gradients
provides the same recovery guarantees as IHT with exact gra-
dient computations. We then leverage these new theoretical re-
sults to develop a consensus-based distributed IHT algorithm
for time-varying networks.

A. IHT With Inexact Gradients

IHT with inexact gradients is identical to IHT in (4), except
that, in each iteration the gradient is computed approximately.
The iteration is thus given by,

(7)

Here, is the error in the gradient computation in
iteration .
The following theorems show that, so long as the sequence

is summable, algorithm (7) provides the same
convergence guarantees as IHT with exact gradients. Proofs
are deferred to Appendix B. Our first theorem (analogous to
Theorem 3.1 in [10]) states that any accumulation point is an
-stationary point (as defined in Definition 1).
Theorem 4.1: Let be lower-bounded and let be Lip-

schitz-continuous with constant . Let be the se-
quence generated by (7) with and with a sequence

satisfying . Then, any accumu-
lation point of is an -stationary point.
For the compressed sensing problem, we can show a stronger

result (analogous to Theorem 3.2 in [10]). Let
. The spark of , denoted is the smallest number

of columns of that are linearly dependent. If ,
then algorithm (7) converges to an -stationary point.
Theorem 4.2: Let , with .

Let be the sequence generated by (7) with
and with a sequence satis-

fying . Then, the sequence
converges to an -stationary point.

B. Distributed Diffusive Consensus

As previously stated, in each iteration of CB-DIHT, the
agents use distributed consensus to compute an approximation



4936 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 19, OCTOBER 1, 2014

of the average of their intermediate vectors , .
In the standard formulation of distributed consensus in a
time-varying network, every agent has an initial, vector-valued
state . In time step , every agent computes a weighted
average of its value and that of its neighbors in that time step.
The vector at agent evolves as,

(8)

where is the weight that agent assigns to the value at
agent . Under appropriate assumptions about the weights and
the network connectivity over time (e.g., Assumption 2), the
agents’ vectors converge to [23].
In CB-DIHT, the agents need to compute an approximate av-

erage in each iteration. As with DIHT for static networks, agent
1 initiates this global computation and computes the next iterate
once the global computation is complete. To use distributed con-
sensus in the global computation step, we must augment the
standard consensus algorithm so that it can be initiated by a
single agent, just as agent 1 initiated the broadcast/convergcast
algorithm in DIHT for static networks. We now explain the de-
tails of our modified consensus algorithm, which we call diffu-
sive distributed consensus.
The algorithm operates in discrete time steps. In any step, an

agent may be initiated, meaning it is participating in the con-
sensus algorithm, or it may be uninitiated, meaning it is not yet
participating in the algorithm.We call a link active at time
if agents and were initiated prior to time . We assume that
agent 1 begins the algorithm at time step 0 and thus is the only
initiated agent at that time. In step 0, agent 1 sends an INITIATE
message along its outgoing links in that time step, i.e., it sends
messages to all agents such that . Upon receipt
of this message, an agent is initiated. In time step 1, the initi-
ated agents begin the consensus algorithm specified by (8) over
the active links that are present in that time step. If agent is
initiated in time step , in all steps , it sends INITIATE mes-
sages over any adjacent, inactive links, thus activating them and
initiating those adjacent nodes if necessary. The agent also per-
forms the consensus iteration (8) over its active links in each
time step . In this manner, the INITIATE message diffuses
through the network until the entire network is participating in
the consensus algorithm, at which point the algorithm is iden-
tical to standard distributed consensus. Pseudocode for the dif-
fusive distributed consensus algorithm is given in the technical
report [28]. One can think of diffusive distributed consensus as
a standard consensus algorithm over a graph , where

contains only active links.
In a time-varying network, an agent may not receive the INI-

TIATE message containing in every iteration. Furthermore,
it may receive an INITIATE message for , with , after
it receives . The iteration number is included in each INI-
TIATE message so that an agent can determine whether the mes-
sage contains the most up-to-date iterate it has seen so far. If it
does, then the agent uses this iterate to compute its intermediate
vector and begins the consensus algorithm with its active neigh-
bors. Otherwise, the agent ignores the message.

To ensure convergence of the diffusive distributed consensus
algorithm, we require that the time-varying network satisfy the
network connectivity conditions in Assumption 2. A conse-
quence of this assumption is that, after at most time
steps, every agent is activated. Therefore, for ,

we have .
We also make the following standard assumption on the

weights used in iteration (8) [14], [23].
Assumption 3: The weight matrices ,

satisfy the following conditions:
(a) The matrix is doubly stochastic.
(b) There exists a scalar , such that for all ,

. Further, if , then , and if

, then .
Under Assumptions 2 and 3, we can bound the deviation be-

tween the average and any agent’s estimate of that average
after time steps of diffusive distributed consensus.
Proposition 4.3: Let the network satisfy Assumption 2. After
time steps of diffusive distributed consensus, initiated at a

single agent, where the weights obey Assumption 3, the devia-
tion of each agent’s estimate from the average satisfies,

where and , with
.

This proposition is a straightforward extension of Proposition
1 in [14] for the standard distributed consensus algorithm. We
therefore omit the proof for brevity.

C. Consensus-Based DIHT

We now detail our CB-DIHT algorithm. As in DIHT for static
networks, each agent has an estimate , initially . For
each iteration of CB-DIHT, agent 1 computes its interme-
diate vector according to (5). It initiates the diffusive distributed
consensus algorithm for iteration by sending along its
outgoing links. All agents use the vector as the initiation
message for this instance of the consensus algorithm. When an
agent receives an initiation message containing , it
updates its local estimate to be identical to that of agent 1, i.e.,
it sets . It ceases participating in the diffusive con-
sensus algorithm instance for iteration (if applicable). It
then computes according to (5), and it begins participating
in the diffusive consensus algorithm instance for iteration of
CB-DIHT.
After agent 1 executes time steps

of diffusive distributed consensus, it uses its local estimate of
the average, denoted , to compute as,

(9)

where . It then begins a new instance of diffusive
distributed consensus for iteration of CB-DIHT. Pseu-
docode for CB-DIHT is given in Algorithm 2.



PATTERSON et al.: DISTRIBUTED COMPRESSED SENSING 4937

Algorithm 2: Consensus-Based DIHT.

initialize

Algorithm executed by agent 1.
while TRUE do

Local computation.

Number of consensus steps.

Algorithm executed by agent .
while TRUE do
on
if then
stop for iter.

Local computation.
In next time step,

D. Algorithm Analysis

CB-DIHT requires storage at each agent. In each round
of diffusive distributed consensus, every agent sends its esti-
mate, an -vector, along all outgoing active links. With respect
to computational complexity, each agent must compute its local
gradient, which, in the case of compressed sensing, consists of
matrix-vector multiplication. Agent 1 performs the thresholding
operation which requires a single scan of .
For each iteration , the estimates at agents are iden-

tical to those at agent 1. We note that, due to the time-varying
nature of the network, it is possible that some agents may not
be initiated in the distributed diffusive consensus instance for
a given iteration. Therefore, the estimates at these agents may
skip iterations of IHT. By Assumption 2, each agent’s estimate
will be updated in infinitely many iterations, and so it suffices
to analyze the convergence of the estimate at agent 1. This es-
timate evolves as follows,

(10)

(11)

(12)

where is the product of the weight matrices for time
steps of the diffusive distributed consensus algorithm, i.e.,

with each satisfying Assumption 3. The notation in-
dicates the entry of the matrix at row 1, column . The vector

is thus agent 1’s estimate of the average of the intermediate
vectors in iteration of CB-DIHT.
It is straightforward to show that the evolution of can

be formulated as an execution of centralized IHT with inexact
gradients.
Proposition 4.4: The evolution of the estimate specified

by (10)–(12) can be written as

(13)

where , , and

.

Proof: By (12), the vector evolves as,

Substituting with the expressions, and
, we obtain (13).

We now show that, under Assumptions 1, 2, and 3, the se-
quence of approximation errors is square-summable.
Lemma 4.5: Under Assumptions 1, 2, and 3, the sequence

defined in Proposition 4.4 satisfies
.
Proof: Let denote the exact average of the interme-

diate vectors in iteration of CB-DIHT, i.e.,

We can thus express as

Using Proposition 4.3, we bound as

Therefore,

(14)

(15)



4938 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 19, OCTOBER 1, 2014

with and . Here, (15) follows
from (14) by Assumption 1(c).
Substituting the value of from (10) into (15), we obtain

We note that since , the functions , , and

are bounded for any (including ). Thus,

the sum of the sequence is upper-bounded
by the sum of a geometric sequence for some con-
stant . Since , this sequence is summable, and thus

is summable, proving the theorem.
The following theorem follows directly from Proposition 4.4,

Lemma 4.5, and Theorems 4.1 and 4.2.
Theorem 4.6: Let Assumptions 1, 2, and 3 hold, and let

, , be the sequences generated by
CB-DIHT with . Then,

1) Any accumulation point of the sequence ,
, is an -Stationary point of (1).

2) For the compressed sensing problem (2), with
, the sequences , , converge to an
-stationary point.

Furthermore, if a sequence , converges to an

-stationary point , then all other sequences, ,
, , converge to .

V. SIMULATIONS

In this section, we demonstrate the performance of our dis-
tributed algorithms for several recovery problems.We also com-
pare our algorithms with previously proposed distributed ap-
proaches for sparse signal recovery. Note that, while DIHT and
CB-DIHT can be used to recover signals from nonlinear mea-
surements, we are unaware of any other distributed method that
addresses this general problem. Therefore we restrict our eval-
uations to distributed compressed sensing, for which there are
several other existing algorithms. We now briefly review these
other methods.

A. Alternative Algorithms

As discussed in Section I, other algorithms for distributed
compressed sensing use a convex optimization formulation, for
example, basis pursuit [29]:

(16)

It has been shown that basis pursuit algorithms have recovery
guarantees comparable to centralized IHT [1]. Therefore, dis-
tributed basis pursuit and DIHT also have comparable recovery
guarantees. CB-DIHT is based on a generalization of centralized
IHT for nonlinear objectives, and the recovery guarantees of this
version of IHT are not as well studied. In our evaluations, DIHT
and CB-DIHT exhibited similar signal recovery capabilities.
In a recent work, Mota et al. compared several distributed

basis pursuit algorithms for static networks and showed that
D-ADMM outperformed all other approaches in terms of the
number of messages [7]. We therefore use D-ADMM as the rep-
resentative example in our evaluation, and we repeat the same
experiments here.
For time-varying networks, we compare CB-DIHT with the

distributed subgradient algorithm [15]. This algorithm was pro-
posed to solve a general class of convex optimization problems,
of which, (16) is a special case. Previous work has shown that, in
time-varying networks, the subgradient algorithm outperforms
the double-looped method in [13] in similar evaluations.
We briefly describe each of these algorithms. Pseudocode is

given in the technical report [28].
1) D-ADMM: D-ADMM is a distributed version of the alter-

nating direction method of multipliers. The algorithm requires
that a graph coloring is available, meaning that every agent is
assigned a color such that no two neighboring agents share the
same color. Each agent has its own estimate . In every iter-
ation, the agent exchanges an intermediate -vector with all of
its neighbors according to the order dictated by the graph col-
oring, and it generates its next iterate by solving a local convex
optimization problem. In a single iteration of D-ADMM, only
one color of agents sends messages at a time. Therefore, one it-
eration of D-ADMM takes times as long as one iteration of
distributed consensus, where is the number of colors. We note
that, it has not been theoretically verified that D-ADMM con-
verges to the optimal solution of (16) in general graphs, however
its convergence has been demonstrated experimentally [7].
2) Distributed Subgradient Algorithm: In the distributed

subgradient algorithm, each agent has an estimate ,
initially 0. Every agent performs a single step of the distributed
consensus algorithm to form a weighted average of its and
its neighbors’ estimates. Thus, in every iteration, the agent
receives an -vector along all of its incoming links in that it-
eration. The agent then locally computes by performing
a projected gradient step with step size . If the weights
used for the consensus algorithm satisfy Assumption 3 and
the step-size sequence is square-summable but not
summable, then, in a static network, this algorithm converges
to the optimal solution of (16). Convergence has also been
shown in time-varying networks that obey Assumption 2 [15].

B. Evaluation Setup

We show evaluation results for three compressed sensing
problems from the Sparco toolbox [30]. Details of the problems
are given in Table I. For each problem, we use the measurement
matrix and original, sparse signal provided by the toolbox.
We generate the measurement vector without any mea-
surement noise. For each problem, we divide the measurements



PATTERSON et al.: DISTRIBUTED COMPRESSED SENSING 4939

TABLE I
RECOVERY PROBLEM PARAMETERS

(rows from and ) evenly among the agents so that each
agent has measurements.
We evaluate each algorithm’s performance on five different

classes of graphs. For each class, we generate five random in-
stances. The results shown in this section are the averages of
the five runs over the five graph instances. The first graph type
is a Barabasi-Albert (BA) scale free graph [31]. The second and
third are Erdös-Rényi (ER) random graphs [32] where each pair
of vertices is connected with probability and proba-
bility , respectively. The fourth and fifth graphs are
geometric graphs [33] with vertices placed uniformly at random
in a unit square. In the fourth graph, two vertices are connected if
they are within a distance of each other, and in the fifth,
vertices are connected if they are within a distance .
Of these graphs, the BA graph is the least connected, with 128
edges, on average, for and 171 edges, on average, for

. The ER graph with is the most connected,
with 992 edges, on average, for and 1,514 edges, on
average, for .
For simulations in time-varying networks, for each of the

graphs described above, we choose ten random subgraphs, en-
suring that the union of these subgraphs is the original graph.
We cycle through these ten graphs, one per time step.
We have implemented all algorithms in Matlab and use CVX

[34] to solve the local optimization problems in D-ADMM. All
algorithms are initiated with each agent’s estimate equal to 0.
D-ADMM requires a graph coloring, which we generate using
the heuristic from the Matgraph toolbox [35], as in [7]. While
we include the preprocessing phase in our results for DIHT, we
do not include graph coloring preprocessing in our results for
D-ADMM. For DIHT, we set for Sparco problems
902 and 7. For Sparco problem 11, we use two values of ,

and . For CB-DIHT in static networks,
we let , where is as for DIHT. For CB-DIHT
in time-varying networks, we use for Sparco
problems 902 and 7. For Sparco problem 11, we use

and . For problem 11, the smaller values
of and are not sufficient to guarantee convergence. In our
evaluations, for these values, DIHT and CB-DIHT converge to
the original signal. For both DIHT and CB-DIHT, is set to
the value in Table I.
For the distributed subgradient algorithm, we exper-

imented with different step-sizes , where
. For the most connected

graphs, the ER graph with and the geometric graph
with , the choice of with the fastest convergence was
0.8. For the remaining graphs, the fastest convergence was with

. In the results below, we use , which was the
value with the second fastest convergence for the vast majority
of graphs. For D-ADMM, we set the algorithm parameters to
those that were shown to be best in the same experiments [7].

C. Results for Static Networks

For each algorithm, we measure the number of values sent
for to be less than either or at
every agent. For D-ADMM and the subgradient algorithm,
is the original sparse signal from the Sparco toolbox.1 DIHT and
CB-DIHT only guarantee convergence to an -stationary point,
and this point may not be the optimal solution to (2). We there-
fore use the relevant -stationary point for where applicable.
In most experiments, DIHT and CB-DIHT do converge to the
original sparse signal. Details of when and how often this occurs
are provided below. For each experiment, we ran the simulation
until convergence within the desired accuracy or for it-
erations, whichever occurred first.
In DIHT and CB-DIHT, some messages consist of values

and others consists of values, while in the other algorithms,
every message consists of values. To standardize the band-
width comparison between the algorithms, we assume that only
one value is sent per message. Therefore, when an agent sends
an -vector to its neighbor, this requires messages. When an
agent sends a -sparse vector, this requires messages; each
component of the vector requires two messages, one containing
the index in the vector and one containing the corresponding
value. Results on the total number of messages that would be
sent using a broadcast message model are given in the technical
report [28]. We also measure the time to convergence in a syn-
chronous network where each message is delivered in one time
step. For all algorithms, we allow one value to be sent on a given
link in each direction per time step.
We compute the number of of values transmitted by each al-

gorithm as follows. For DIHT, each iteration consists of a broad-
cast phase and convergecast phase. In the broadcast phase, each
agent sends a -vector to all of its children, requiring
messages where is the number of children that agent has
in the spanning tree (note that is less than or equal to the
node degree of agent in the original graph). In the converge-
cast phase, each agent, except agent 1, sends an -vector to
its parent in the tree, requiring messages. In a network of
agents, a spanning tree has edges. Therefore, for a

given problem, DIHT requires the same number of messages for
convergence for every network topology. The number of mes-
sages needed to create the spanning tree depends on the network
topology, but this messages count is insignificant when com-
pared message count of the algorithm execution. In D-ADMM
and the subgradient algorithm, each agent sends an -vector to
all of its neighbors in the original graph in each iteration. Thus,
each agent sends messages per iteration, where is the
node degree of agent in the original graph. In CB-DIHT, each
agent sends at most activation vectors per iteration,
where each activation vector is -vector that is sent in mes-
sages. After activation, an agent sends -vectors to each of its
active neighbors in each distributed diffusive consensus round,
sending at most messages per consensus round.
The results for Sparco problems 902 and 7 are shown in

Tables II and III. For both problems, DIHT outperforms all

1We have numerically verified that a centralized basis pursuit formulation
recovers this original sparse signal. Additionally, it has been shown in [7] that,
in the same simulation setup, D-ADMM and the distributed subgradient method
converge to the original signal for Sparco problems 902, 7, and 11.



4940 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 19, OCTOBER 1, 2014

TABLE II
SIGNAL RECOVERY IN A STATIC NETWORK FOR SPARCO PROBLEM 902 TO ACCURACIES OF AND

TABLE III
SIGNAL RECOVERY IN A STATIC NETWORK FOR SPARCO PROBLEM 7 TO ACCURACIES OF AND

other algorithms in both bandwidth and time on all graph
instances, and in all cases, DIHT recovers the optimal solution.
DIHT requires two orders of magnitude fewer values and time
steps than its closest competitor, D-ADMM, to achieve an
accuracy of . It requires at least one order of magnitude
fewer values and time steps than D-ADMM to achieve an
accuracy of . Both CB-DIHT and the subgradient algo-
rithm require more values and time than D-ADMM for these
problems. This indicates that these algorithms pay a price for
tolerating network dynamics even when the network is static.
For an accuracy of , the subgradient algorithm did not
converge before the maximum number of iterations. The results
shown are thus a lower bound on the true number of values
and time steps required by this algorithm. CB-DIHT converged
to the optimal solution in all experiments, outperforming the
subgradient algorithm by at least one order of magnitude in
bandwidth and time in most cases.
Results for Sparco problem 11 are shown in Table IV. For

DIHT, is sufficient to guarantee convergence to an
-stationary point. However, convergence with this is slower
than that of D-ADMM, sometimes requiring up to one order of
magnitude more time steps, although with less bandwidth. Also,

with , DIHT converged to an -stationary point that
was suboptimal. In all simulations, DIHT with con-
verged to the original signal. In addition, with the smaller ,
DIHT sent one to three orders of magnitude fewer values than
D-ADMM and required one to three orders of magnitude fewer
time steps. The performance of CB-DIHT is also significantly
worse for than for , by sev-
eral orders of magnitude. Additionally, for ,
CB-DIHT converged to a suboptimal -stationary point in all
but two graph instances. With , CB-DIHT con-
verged to the original signal in all cases. These results indi-
cate that the bound on in Theorem 4.1 is not tight, and that
further investigation into the convergence conditions for both
IHT and its distributed variants is warranted. For the BA graph,
the ER graph with and the geometric graph with

, the subgradient algorithm required more than
iterations to converge to within an error of . As the table
shows, CB-DIHTwith the larger outperformed the subgra-
dient method in both time and bandwidth for all but one graph
(Geo ). With the smaller value of , CB-DIHT out-
performed the subgradient method in both time and bandwidth,
usually by at least one order of magnitude.



PATTERSON et al.: DISTRIBUTED COMPRESSED SENSING 4941

TABLE IV
SIGNAL RECOVERY IN A STATIC NETWORK FOR SPARCO PROBLEM 11 TO AN ACCURACY OF . FOR DIHT WITH AND CB-DIHT WITH

, IN THE VAST MAJORITY OF EXPERIMENTS, THE ALGORITHMS CONVERGE TO AN -STATIONARY POINT THAT IS NOT THE ORIGINAL
SIGNAL. THE VALUES SHOWN FOR DIHT AND CB-DIHT ARE FOR CONVERGENCE TO THE -STATIONARY POINT; THESE VALUES ARE PRECEDED BY A .

FOR CONVERGENCE TO THE ORIGINAL SIGNAL, THE VALUES IN THESE COLUMNS WOULD ALL BE INFINITE. FOR ALL OTHER COLUMNS,
THE VALUES SHOWN ARE FOR CONVERGENCE TO THE ORIGINAL SIGNAL

One interesting observation is that for DIHT, CB-DIHT, and
the distributed subgradient algorithm, as the network connec-
tivity increases, both the bandwidth and convergence time de-
crease. In contrast, in D-ADMM, as network connectivity in-
creases, the algorithm performance gets worse, requiring both
more bandwidth and time. In the problem formulation used by
D-ADMM, additional constraints are introduced for each edge
in the network graph; it is our intuition that these additional
constraints lead to a decreased convergence rate. In DIHT, a
more connected the network results in a spanning tree with a
smaller height; thus, less bandwidth and time is needed to com-
pute each sum. CB-DIHT and the subgradient algorithm both
employ distributed consensus algorithms which are well known
to converge more quickly in more connected graphs. We believe
that the increase in the convergence rate of the consensus algo-
rithm is carried through to the converge rates of CB-DIHT and
the subgradient algorithm.
In D-ADMM, the agents’ estimates should become sparse

as the algorithm progresses. If this happens, the agents can ex-
change sparse representations of their estimates, thus reducing
the total number of messages. We checked for this in our sim-
ulations, and for the problems and networks considered herein,
using sparse representations had little impact on the evaluation
results. We believe that it is possible to optimize the communi-
cation of D-ADMM in some settings using sparse vector rep-
resentations, however, this optimization is beyond the scope of
this paper.
Finally, we note that, for some network messaging schemes,

such as TDMA, it is more efficient to send messages containing
multiple values, rather than a single value per message. All al-
gorithms studied in this section would see improvement under
this type of scheme. Since in DIHT, a -sparse vector is broad-
cast in each iteration, while the other algorithms always send
-vectors, DIHT would not benefit as much.

D. Results for Time-Varying Networks

We compare CB-DIHT with the distributed subgradient
method in time-varying networks. Both algorithms use dis-

tributed consensus as a building block; in the subgradient
method, agents perform one consensus round per iteration,
where agents exchange -vectors with their neighbors in that
round. In CB-DIHT, multiple diffusive consensus rounds are
performed for each iteration of DIHT and in each consensus
round, agents exchange -vectors with their neighbors in that
round. For each algorithm, we count the number of consensus
rounds needed for to be less than either

or at every agent, where is as defined in the static
network evaluations above.
The results for time-varying networks are shown in Table V.

We ran each experiment for a maximum of consensus
rounds. For the subgradient algorithm, every graph instance
required more than consensus rounds to converge to
within of . Therefore, we do not show these values in
the table. For Sparco problems 902 and 7, CB-DIHT converged
to the optimal solution in every instance. In problem 902,
CB-DIHT outperformed the subgradient algorithm by as much
as two orders of magnitude for an accuracy of . CB-DIHT
required at least one order of magnitude fewer consensus
rounds to achieve an accuracy of in all cases. For Sparco
problem 7, CB-DIHT required at least one order of magnitude
fewer consensus rounds for both accuracies.
As before, for CB-DIHT on Sparco problem 11, we use

a value of that is sufficient to guarantee convergence,
, and a smaller value, , that

is not sufficient to guarantee convergence, but nevertheless,
converges in all experiments. For the larger value of ,
CB-DIHT converged to a suboptimal -stationary point in all
but four experiments. For , CB-DIHT always
converged to the original signal. For both values of ,
CB-DIHT required fewer consensus rounds to converge than
the subgradient algorithm. This difference is more pronounced
with , where CB-DIHT outperformed the sub-
gradient algorithm by at least two orders of magnitude for both
accuracies. These results reinforce the need for further investi-
gation into the relationship between and the convergence
behavior of CB-DIHT.



4942 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 19, OCTOBER 1, 2014

TABLE V
NUMBER OF ITERATIONS OF DISTRIBUTED CONSENSUS NEEDED FOR SIGNAL RECOVERY IN A TIME-VARYING NETWORK. FOR ACCURACY, THE

SUBGRADIENT ALGORITHM REQUIRED MORE THAN ITERATIONS IN EVERY INSTANCE. FOR SPARCO PROBLEM 11 ONLY, CB-DIHT WITH
DOES NOT ALWAYS CONVERGE TO THE ORIGINAL SIGNAL. THE VALUES SHOWN IN THIS COLUMN ARE FOR CONVERGENCE TO A SUB-OPTIMAL -STATIONARY

POINT. THESE VALUES ARE PRECEDED BY A . ALL OTHER COLUMNS GIVE VALUES FOR CONVERGENCE TO THE ORIGINAL SIGNAL

VI. DISCUSSION OF FAULT TOLERANCE

In both DIHT and CB-DIHT, agent 1 is solely responsible
for performing the thresholding operation in each iteration. A
natural question that arises is what happens if this agent fails, or
more generally, are these algorithms fault tolerant?
In a discussion of fault tolerance in a static network, we

must first assume that the network is synchronous since it is
impossible to detect node failures in an asynchronous network.
Under this assumption, it is straightforward to make DIHT
fault tolerant using a self-stabilizing, distributed algorithm
for constructing the spanning tree [36]. The network will
autonomously reconstruct the tree on detection of an agent
failure, so long as the underly graph remains connected. Should
the root fail (agent 1), the new root will assume the role of
agent 1. Since the agents all share the same estimate, once the
tree is repaired, the algorithm can pick up essentially where it
left off. While the tree is under repair, some agents’ estimates
may diverge. However, since there is a single leader and every
agent has a single parent in the tree, this hierarchy ensures that
the system will return to a consistent state.
After a failure, the objective function will be different; the

current estimate serves as warm start for the new optimization
problem. In addition, if agent 1 uses as its upper
bound for in the original problem, this sum is also an upper
bound for for the problem after the failure. Therefore, the
value of does not need to change.
In time-varying networks, it is not possible to detect failures.

Therefore, there is no straightforward way to make CB-DIHT
handle the failure of agent 1. If any other agent fails, CB-DIHT
can proceed without modification, using the current estimate as
the initial estimate for the new optimization problem.

VII. CONCLUSION

We have presented two algorithms for in-network, sparse
signal recovery based on Iterative Hard Thresholding. We first

proposed DIHT, a distributed implementation of IHT for static
networks that combines a novel decomposition of centralized
IHT with standard tools from distributed computing. Next, we
proposed an extension of DIHT for time-varying networks. We
showed how centralized IHT can be extended to accommodate
inexact computations in each iteration. We then leveraged these
new theoretical results to develop CB-DIHT, a version of DIHT
that uses a consensus algorithm to execute these inexact com-
putations in a distributed fashion. Our evaluations have shown
that, in static networks, DIHT outperforms the best-known
distributed compressed sensing algorithms in both bandwidth
and time by several orders of magnitude. In time-varying
networks, CB-DIHT outperforms the best known algorithm for
distributed compressed sensing that accommodates changing
network topologies. We note that, unlike previously proposed
algorithms, both DIHT and CB-DIHT can be applied to re-
covery problems beyond distributed compressed sensing,
including recovery from nonlinear measurements.
In future work, we plan to extend our distributed algorithms

to support tracking of sparse, time-varying signals. We also plan
to explore the application of DIHT and CB-DIHT to problems
in the Smart Grid.

APPENDIX A
DISTRIBUTED COMPUTATION OF AND

To determine or , agent 1 must learn an upper bound on
the Lipschitz constant of the function .
We first note that, by Assumption 1(b), for all ,



PATTERSON et al.: DISTRIBUTED COMPRESSED SENSING 4943

Therefore, is an upper bound for .We now present
distributed algorithms by which agent 1 can learn this sum.
Computation for DIHT: As a pre-processing step for DIHT,

the agents construct a spanning tree of the graph with agent
1 as its root. For agent 1 to learn the sum , it simply
needs to broadcast a request down the tree. The agents then use a
convergecast to aggregate their values for up the tree. The
aggregation convergecast is identical to that used to compute
the sum of intermediate vectors in each iteration of
DIHT, as described in Section III-B. Once agent 1 knows this
sum, it can select an so that the convergence of
DIHT is guaranteed.
Computation for CB-DIHT: For CB-DIHT, the step size
must be such that . One possibility is for

the agents to use a distributed consensus algorithm to estimate
the average of their respective However, agent 1 may
not be able to determine how many consensus rounds are
needed to estimate the average with enough accuracy to gen-
erate a correct upper bound. A more communication efficient
option is for agent 1 to use a distributed algorithm to find

. Since ,
can be used as an (non-strict) upper bound on the average.

To compute , every agent stores a variable that it
initializes to . In every round , the agents sends to all
neighbors in that time step. When an agent receives a value
from a neighbor, where , it sets . If the
network satisfies Assumption 2, then after at most rounds
of the algorithm, where is as defined in Assumption 2 and
is the diameter of the graph , , i.e., agent
1 knows the correct value for .
Since the agents do not know or , agent 1 cannot deter-

mine how long to wait before it learns and can begin the
CB-DIHT algorithm. Instead, the agents execute the distributed
max-finding algorithm concurrently with CB-DIHT. In each it-
eration of IHT, agent 1 uses its current value as a bound
for the step size, i.e., . After a finite number of
time steps, . Therefore, the convergence guaran-
tees stated in Theorems 4.1 and 4.2 still hold.

APPENDIX B
PROOFS FOR ITERATIVE HARD THRESHOLDING WITH

INEXACT GRADIENTS

In this section, denotes the norm.
First, for convenience, we restate some relevant results from

[37] and [10].
Lemma B.1 (Descent Lemma): Let be a continuously dif-

ferentiable function whose gradient is Lipschitz continuous
over with constant . Then, for every ,

where

(17)

Lemma B.2 (Lemma 2.2 From [10]): For any , is
an -stationary point of problem (1) if and only if
and, for ,

if
if ,

where for a given vector , returns the absolute value
of the th largest magnitude component of .
We first derive the following lemma about the relationship

between the iterates in and that are generated by IHT
with approximate gradients (analogous to Lemma 2.4 in [10]).
Lemma B.3: Let be a -sparse vector, let be

the sequence generated by IHTwith inexact gradients in (7) with
, and let satisfy Assumption 1. Then, the following

inequality holds for all :

(18)

Proof: Let be the set of -sparse real vectors with
components. The iteration (7) is equivalent to,

where is as defined in (17). The above implies that,

(19)

By Lemma B.1, we have

(20)

(21)

where (21) is obtained from (20) by applying the identity,

Combining (19) and (21), we obtain the result in (18).
Using this lemma, we can establish the convergence of the se-

quence , provided the sequence of error
terms is square-summable.
Lemma B.4: Let be -sparse, and let be the

sequence generated by IHT with inexact gradients in (7) with
constant step size . Let the sequence be such

that . Then,
1) There exists a such that for all ,

.



4944 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 19, OCTOBER 1, 2014

2) .
Proof: To prove the first part of the lemma, we show the

sequence is bounded. Consider
the sum over time of . We can bound this
as,

where the last inequality follows from the fact that is lower
bounded by a constant . This bound holds for all .
Define , and note that since is finite,
is also finite. By Lemma B.3, we have the following for all

,

(22)

(23)

where (23) follows from (22) by the Cauchy-Schwarz inequality
and the assumption on the square-summability of the error.
For clarity of notation, let , , and

. We can then rewrite (23) as,

(24)

Our goal is to show that the sum is bounded (for all
), i.e., we must show that every that satisfies (24) is
bounded. These values are such that,

Since is finite, the sum is bounded for all , thus proving
part one of the lemma.
We now show that converges,

implying part two of the lemma (see [38], Theorem 3.23). To
this end, we must show that the sequence is monotonically non-
decreasing and bounded. We have already established that it is
bounded. Monotonicity is easily established by,

We now prove the main results of Section IV-A.

Theorem 4.1 (Restated): Let be lower-bounded and let
be Lipschitz-continuous with constant . Let be the
sequence generated by (7) with and with a sequence

satisfying . Then, any accumu-
lation point of is an -stationary point.

Proof: Let be an accumulation point of the se-
quence of . Since the set of -sparse vectors
is closed, any such is -sparse. If is an accumula-
tion point, then there exists a subsequence such
that . By Lemma B.4, we also have

. Combing these two state-
ments, we can conclude that .
Consider the non-zero components of , i.e., components

with . Since both and converge to ,
there exists an such that , for all .
Therefore, for ,

(25)

Since is bounded, we have .
Thus, taking to in (25), we obtain that .
Now consider the zero components of , i.e. components

with . If there exist an infinite number of indices for
which , then, as before,

which implies , and thus .
If there exists a such that for all , ,
then,

Taking to infinity and noting that , we obtain,

or equivalently, . Therefore, by
Lemma B.2, is an -stationary point, proving the theorem.
Theorem 4.2 (Restated): Let , with

. Let be the sequence generated by
(7) with and with a sequence

satisfying . Then, the sequence
converges to an -stationary point.

Proof: First, we show that the sequence is
bounded. Applying Lemma B.3, we have

(26)



PATTERSON et al.: DISTRIBUTED COMPRESSED SENSING 4945

(27)

By the assumption on the square summability of the error terms,
there exists such that . We also de-

fine such that . Note
that, by Lemma B.4, such an exists. With these definitions,
we arrive at the following inequality for ,

Let be the level set,

and note that the sequence is contained in this set. For
, if is -sparse and , then

the set is bounded (see [10], Theorem 3.2). Thus the sequence
is bounded.

Using an argument identical to one in the proof of Theorem
3.2 in [10], it can be shown that converges to an
-stationary point. We repeat this argument here for complete-
ness. The boundedness of implies that there exists a
subsequence that converges to an -stationary point
. By Lemma 2.1 in [10], there are only a finite number of
-stationary points. Assume that the sequence does
not converge to . This means that there exists an such
that for all , there exists a with .
Define to be less than the minimum distance between

all pairs of -stationary points, and define .
Without loss of generality, assume that satisfies

for all , and define the sequence
with,

Since, by assumption, does not converge to , each
is well-defined. Given the definition of and the fact that

(by Lemma B.4), there exists a subse-
quence of that converges to a point with .
The existence of this subsequence contradicts the assumption
that was chosen so every accumulation point is such
that . Therefore, the sequence con-
verges to .

REFERENCES
[1] Y. C. Eldar and G. Kutyniok, Compressed Sensing: Theory and Appli-

cations. Cambridge, U.K.: Cambridge Univ. Press, 2012.
[2] J. Meng, H. Li, and Z. Han, “Sparse event detection in wireless sensor

networks using compressive sensing,” in Proc 43rd Ann. Conf. Inf. Sci.
Syst., Mar. 2009, pp. 181–185.

[3] Z. Li, Y. Zhu, H. Zhu, and M. Li, “Compressive sensing approach to
urban traffic sensing,” in Proc. 31st Int. Conf. Distrib. Comput. Syst.,
Jun. 2011, pp. 889–898.

[4] X. Yu, H. Zhao, L. Zhang, S. Wu, B. Krishnamachari, and V. O. K. Li,
“Cooperative sensing and compression in vehicular sensor networks
for urban monitoring,” in Proc. IEEE Int. Conf. Commun., May 2010,
pp. 1–5.

[5] J. A. Bazerque and G. B. Giannakis, “Distributed spectrum sensing for
cognitive radio networks by exploiting sparsity,” IEEE Trans. Signal
Process., vol. 58, no. 3, pp. 1847–1862, Mar. 2010.

[6] J. Mota, J. Xavier, P. Aguiar, and M. Püschel, “Basis pursuit in sensor
networks,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
May 2011, pp. 2916–2919.

[7] J. Mota, J. Xavier, P. Aguiar, and M. Püschel, “Distributed basis pur-
suit,” IEEE Trans. Signal Process., vol. 60, no. 4, pp. 1942–1956, Apr.
2012.

[8] J. Mota, J. Xavier, P. Aguiar, and M. Püschel, “D-ADMM: A com-
munication-efficient distributed algorithm for separable optimization,”
IEEE Trans. Signal Process., vol. 61, no. 10, pp. 2718–2723, May
2013.

[9] T. Blumensath and M. E. Davies, “Iterative hard thresholding for com-
pressed sensing,” Appl. Comput. Harmon. Anal., vol. 27, no. 3, pp.
265–274, Nov. 2009.

[10] A. Beck and Y. C. Eldar, “Sparsity constrained nonlinear optimization:
Optimality conditions and algorithms,” SIAM J. Optimiz., vol. 23, no.
3, pp. 1480–1509, Oct. 2013.

[11] J. N. Tsitsiklis, “Problems in Decentralized DecisionMaking and Com-
putation,” Ph.D. dissertation, Mass. Inst. Technol., Cambridge, MA,
USA, 1984.

[12] J. Mota, J. Xavier, P. Aguiar, and M. Püschel, “Distributed algorithms
for basis pursuit,” in Proc. 2nd Int. Workshop Signal Process. Adapt.
Sparse Structured Represent., Jun. 2009.

[13] D. Jakovetic, J. Xavier, and J. Moura, “Cooperative convex optimiza-
tion in networked systems: Augmented Lagrangian algorithms with di-
rected gossip communication,” IEEE Trans. Signal Process., vol. 59,
no. 8, pp. 3889–3902, Aug. 2011.

[14] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1, pp.
48–61, Jan. 2009.

[15] I. Lobel, A. E. Ozdaglar, and D. Feijer, “Distributed multi-agent opti-
mization with state-dependent communication,” Math. Program., vol.
129, no. 2, pp. 255–284, Oct. 2011.

[16] C. Ravazzi, S. Fosson, and E. Magli, “Distributed soft thresholding for
sparse signal recovery,” CoRR, vol. abs/1301.2130, 2013.

[17] A. I. Chen and A. E. Ozdaglar, “A fast distributed proximal-gradient
method,” in Proc. Allerton Conf. Commun., Contr., Comput., Oct.
2012, pp. 601–608.

[18] M. Schmidt, N. Le Roux, and F. Bach, “Convergence rates of inexact
proximal-gradient methods for convex optimization,” in Proc. 25th
Ann. Conf. Neural Inf. Process. Syst., Dec. 2011, pp. 1458–1467.

[19] T. Blumensath and M. E. Davies, “Iterative thresholding for sparse ap-
proximations,” J. Fourier Anal. Appl., vol. 14, no. 5, pp. 629–654, Dec.
2008.

[20] T. Blumensath, “Compressed sensing with nonlinear observations and
related nonlinear optimization problems,” IEEE Trans. Inf. Theory, vol.
59, no. 6, pp. 3466–3474, Jun. 2013.

[21] S. Patterson, Y. C. Eldar, and I. Keidar, “Distributed sparse signal
recovery in sensor networks,” in Proc. IEEE Int. Conf. on Acoust.,
Speech, Signal Process., May 2013, pp. 4494–4498.

[22] N. Lynch, Distributed Algorithms. San Mateo, CA, USA: Morgan
Kaufmann, 1996.

[23] V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis,
“Convergence in multiagent coordination, consensus, and flocking,” in
Proc. Joint 44th IEEE Conf. Decision Contr. Eur. Contr. Conf., Dec.
2005, pp. 2996–3000.

[24] B. K. Natarajan, “Sparse approximate solutions to linear systems,”
SIAM J. Comput., vol. 24, no. 2, pp. 227–234, Apr. 1995.

[25] E. J. Candès, “Compressive sampling,” in Proc. Int. Congr. Math.,
Aug. 2006, pp. 1433–1452.

[26] A. Segall, “Distributed network protocols,” IEEE Trans. Inf. Theory,
vol. 29, no. 1, pp. 23–35, Jan. 1983.

[27] H. Attiya and J. Welch, Distributed Computing: Fundamentals, Simu-
lations, and Advanced Topics, 2nd ed. New York, NY, USA: Wiley-
Interscience, 2004, vol. 19.

[28] S. Patterson, Y. C. Eldar, and I. Keidar, “Distributed compressed
sensing for static and time-varying newtorks,” CoRR, 2013,
arXiv:1308.6086.

[29] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by
basis pursuit,” SIAM J. Sci. Comput., vol. 20, no. 1, pp. 33–61, 1998.

[30] E. V. Berg, M. P. Friedlander, G. Hennenfent, F. Herrmann, R. Saab,
and Ö. Yılmaz, Sparco: A Testing Framework for Sparse Recon-
struction Dep. Comput. Sci., Univ. British Columbia, Vancouver, BC,
Canada, Tech. Rep. TR-2007-20, Oct. 2007.



4946 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 19, OCTOBER 1, 2014

[31] A. Barabási and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 409–410, Oct. 1999.

[32] P. Erdös and A. Rényi, “On random graphs I,” Pub. Math. Debrecen,
vol. 6, pp. 290–297, 1959.

[33] M. Penrose, Random Geometric Graphs. London, U.K.: Oxford
Univ. Press, 2004.

[34] M. Grant and S. Boyd, “CVX:Matlab Software for Disciplined Convex
Programming, Version 1.21,” Apr. 2011 [Online]. Available: http://
cvxr.com/cvx

[35] E. R. Scheinerman, “Matgraph: A Matlab Toolbox for Graph
Theory,” 2012 [Online]. Available: http://www.ams.jhu.edu/~ers/mat-
graph/matgraph.pdf

[36] H. Baala, O. Flauzac, J. Gaber, M. Bui, and T. El-Ghazawi, “A self-sta-
bilizing distributed algorithm for spanning tree construction in wire-
less ad hoc networks,” J. Parallel Distrib. Comput., vol. 63, no. 1, pp.
97–104, Jan. 2003.

[37] D. P. Bertsekas, Nonlinear Programming. Belmont, MA, USA:
Athena Scientific, 1999.

[38] W. Rudin, Principles of Mathematical Analysis. New York, NY,
USA: McGraw-Hill, 1976.

Stacy Patterson (M’13) received the B.S. degree
in mathematics and computer science from Rutgers
University in 1998 and the M.S. and Ph.D. degrees in
computer science from the University of California,
Santa Barbara, in 2003 and 2009, respectively.
She is the Clare Boothe Luce Assistant Professor

in the Department of Computer Science at Rensse-
laer Polytechnic University. From 2009 to 2011, she
was a postdoctoral scholar at the Center for Control,
Dynamical Systems and Computation at the Univer-
sity of California, Santa Barbara. From 2011 to 2013,

she was a postdoctoral fellow at the Department of Electrical Engineering at the
Technion. Her research interests are in distributed algorithms, cooperative con-
trol, and sensor networks.
Dr. Patterson is the recipient of a Vitterbi postdoctoral fellowship and the

IEEE CSS Axelby Outstanding Paper Award.

Yonina C. Eldar (S’98–M’02–SM’07–F’12) re-
ceived the B.Sc. degree in physics and the B.Sc.
degree in electrical engineering both from Tel-Aviv
University (TAU), Tel-Aviv, Israel, in 1995 and
1996, respectively, and the Ph.D. degree in electrical
engineering and computer science from the Massa-
chusetts Institute of Technology (MIT), Cambridge,
in 2002.
From January 2002 to July 2002, she was a

Postdoctoral Fellow at the Digital Signal Processing
Group at MIT. She is currently a Professor in

the Department of Electrical Engineering at the Technion-Israel Institute of
Technology, Haifa, and holds The Edwards Chair in Engineering. She is also a

Research Affiliate with the Research Laboratory of Electronics at MIT and a
Visiting Professor at Stanford University, Stanford, CA. Her research interests
are in the broad areas of statistical signal processing, sampling theory and
compressed sensing, optimization methods, and their applications to biology
and optics.
Dr. Eldar was a Horev Fellow of the Leaders in Science and Technology

program at the Technion and an Alon Fellow. In 2004, she was awarded the
Wolf Foundation Krill Prize for Excellence in Scientific Research, in 2005 the
Andre and Bella Meyer Lectureship, in 2007 the Henry Taub Prize for Excel-
lence in Research, in 2008 the Hershel Rich Innovation Award, the Award for
Women with Distinguished Contributions, the Muriel & David Jacknow Award
for Excellence in Teaching, and the Technion Outstanding Lecture Award, in
2009 the Technion’s Award for Excellence in Teaching, in 2010 the Michael
Bruno Memorial Award from the Rothschild Foundation, and in 2011 the Weiz-
mann Prize for Exact Sciences. In 2012 she was elected to the Young Israel
Academy of Science and to the Israel Committee for Higher Education, and
elected an IEEE Fellow. In 2013 she received the Technion’s Award for Ex-
cellence in Teaching, the Hershel Rich Innovation Award, and the IEEE Signal
Processing Technical Achievement Award, and in 2014 the IEEE/AESS Fred
Nathanson Memorial Radar Award. She received several best paper awards to-
gether with her research students and colleagues. She is the Editor in Chief
of Foundations and Trends in Signal Processing and a member of the IEEE
Sensor Array and Multichannel Technical Committee. In the past, she was a
Signal Processing Society Distinguished Lecturer, member of the IEEE SIGNAL
PROCESSING THEORY AND METHODS and Bio Imaging Signal Processing tech-
nical committees, and served as an associate editor for the IEEE TRANSACTIONS
ON SIGNAL PROCESSING, the EURASIP Journal of Signal Processing, the SIAM
Journal onMatrix Analysis and Applications, and the SIAM Journal on Imaging
Sciences.

Idit Keidar received her B.Sc. (summa cum laude),
M.Sc. (summa cum laude), and Ph.D. at the Hebrew
University of Jerusalem in 1992, 1994, and 1998,
respectively.
She is a Professor at the Department of Electrical

Engineering at the Technion and Head of the Net-
worked Software Systems Laboratory (NSSL). She
was a postdoctoral research associate at MIT’s labo-
ratory for Computer Science, where she held Post-
doctoral fellowships from Rothschild Yad-Hanadiv
and NSF CISE. Her research is broadly in distributed

and concurrent algorithms and systems, as well as fault-tolerant network-based
computing.
Prof. Keidar was awarded the Yanai Award for Excellence in Academic Ed-

ucation, the Muriel and David Jackow Award for Excellence in Teaching, the
David Dudi Ben-Aharon Research Award, the Allon Fellowship, the Rothschild
Yad-Hanadiv fellowship for postdoctoral studies, and a Wolf Foundation Prize
for Ph.D. students. She has served on over 30 program committees, including as
PC Chair of DISC 2009 and SYSTOR 2015, as a columnist for SIGACT News,
and a guest editor for Distributed Computing, and is currently serving on the
editorial board of IEEE CAL.


